Ein Jahrhundert Mathematik 1890 - 1990

Ein Jahrhundert Mathematik 1890 - 1990

zum Preis von:
119,99€
Preis inkl. Mwst. versandkostenfrei
In den Warenkorb

Festschrift zum Jubiläum der DMV

Kartoniert/Broschiert
Vieweg+Teubner, Dokumente zur Geschichte der Mathematik .6, 2012, 830 Seiten, Format: 16x24x4,3 cm, ISBN-10: 3322802663, ISBN-13: 9783322802668, Bestell-Nr: 32280266A

Reduzierte Artikel in dieser Kategorie


Produktbeschreibung

Zum Anlass des 100. Geburtstages der Deutschen Mathematiker-Vereinigung erscheint diese Festschrift, bestehend aus neunzehn Beiträgen, in denen anerkannte Fachwissenschaftler die Entwicklung ihres jeweiligen mathematischen Fachgebietes beschreiben und dabei auch kritische Rückschau auf die Geschichte der Deutschen Mathematiker-Vereinigung seit ihrer Gründung 1890 halten. Insbesondere der erste Beitrag setzt sich intensiv mit der Historie der Mathematik und der Mathematiker im Dritten Reich auseinander."Mit diesem Band wird ein wichtiger Beitrag zur bisher wenig entwickelten Geschichtsschreibung der neueren Mathematik geleistet. (R. Siegmund-Schultze in "Deutsche Literatur-Zeitung" 1,2/1992, Bd. 113)

Inhaltsverzeichnis:

'Fachverband - Institut - Staat.- Einführung.- 1 Gründung der DMV.- 2 Felix Klein und die Anwendungen der Mathematik.- 3 Folgen des Nationalsozialismus für die Mathematik an den Universitäten.- 4 "Nationalismus versus Internationalismus".- 5 Ausblicke.- Quellen- und Literaturverzeichnis.- Diskrete Mathematik.- Einführung.- 1 Ideen zur Abzählung.- 2 Graphentheorie.- 3 Ideen zur Existenz.- 4 Ideen zur Optimierung.- 5 Ausblick.- Anmerkungen.- Kurzer Abriß der Geschichte der Informatik 1890-1990.- 1 Informatik und Mathematik.- 2 Die Situation von 1890.- 3 Die ersten 45 Jahre: Im Banne mechanischer und elektromechanischer Geräte.- 4 Der Umbruch zwischen 1935 und 1960: Universelle Maschinen, elektronische Realisierungen.- 5 Die letzten 30 Jahre: Die Informatik formiert sich.- 6 Ausblick: Die Informatik einerseits, die Mikroelektronik andrerseits bedingen sich gegenseitig.- Partielle Differentialgleichungen und Variationsrechnung.- I Die Quellen der Theorie.- II Die Grundlegung der modernen Theorie.- III Die Ausgestaltung der modernen Theorie.- IV Ein Beispiel für die modernen Methoden.- Grundlagen der Geometrie.- Einführung.- 1 Inzidenz.- 2 Anordnung, Kongruenz.- 3 Geometrische Strukturen.- Numerik.- Einführung.- 1 Zeit bis etwa 1920.- 2 Zeit von etwa 1920 bis zum Zweiten Weltkrieg.- 3 Zeit von etwa 1935 bis etwa 1945.- 4 Zeit nach dem Zweiten Weltkrieg.- 5 Einige weitere, teils neue Gebiete der Numerischen Mathematik.- Literatur.- Differentialgeometrie.- Einführung.- 1 Zur Entwicklung einiger Grundbegriffe und Probleme der Differentialgeometrie.- 2 Kurven und Flächen in euklidischen Räumen.- Anmerkungen.- Über die Entwicklung der Funktionentheorie in Deutschland von 1890 bis 1990.- Einführung.- 1 Zur Grundlegung der Funktionentheorie.- 2 Der Riemannsche Abbildungssatz.- 3 Normale Funktionenfamilien und Verwandtes.- 4 Konforme Abbildung mehrfach zusammenhängender Gebiete.- 5 Die Methode der extremalen Länge.- 6 Quasikonforme Abbildungen.- 7 Im Einheitskreis schlichte Funktionen.- 8 Potenzreihen an der Konvergenzgrenze - Summierung.- 9 Werteverteilung in ?.- 10 Werteverteilung in ?.- 11 Darstellungssätze - Approximation im Komplexen.- 12 Konstruktive Gesichtspunkte.- Zeittafel.- Biographische Hinweise auf die in der Zeittafel genannten deutschen Funktionentheoretiker.- Zur Geschichte der Konvexgeometrie und der Geometrie der Zahlen.- Einführung.- 1 Das Altertum.- 2 Die Neuzeit bis zum Beginn des 19. Jahrhunderts.- 3 Das 19. Jahrhundert bis vor die Jahrhundertwende.- 4 Die systematische Phase um die Wende zum 20. Jahrhundert.- 5 Die weitere Entwicklung im 20. Jahrhundert.- 6 Schlußbemerkungen.- Wahrscheinlichkeitstheorie.- Einführung.- 1 Czubers Bericht.- 2 Schritte auf dem Weg zur Axiomatik Kolmogorows.- 3 Die Kontroverse um vonMises' Axiomatik.- 4 Anstöße aus der Physik.- 5 Nichtaxiomatische Beiträge vor 1945.- 6 Wolfgang Doeblin und Harry Reuter.- 7 Der Neubeginn.- 8 Versicherungsmathematik.- 9 Stochastik auf der Schule.- 10 Lehren.- 11 Ergänzende biographische Angaben.- Zur Entwicklung der angewandten Analysis und mathematischen Physik in den letzten hundert Jahren.- Einführung.- 1 Das Dirichletsche Prinzip.- 2 Integralgleichungen.- 3 Direkte Bestimmung des Minimums.- 4 Darstellung linearer Operatoren.- 5 Anfangsrandwertaufgaben und Streutheorie.- 6 Nichtlineare Probleme.- Vom Hilbertschen Basissatz bis zur Klassifikation der endlichen einfachen Gruppen.- Einführung.- 1 Entstehung der abstrakten Algebra.- 2 Berliner Schule.- 3 Anwendungen der "Modernen Algebra" in anderen Gebieten der Mathematik.- 4 Darstellungstheorie endlicher Gruppen und endlich-dimensionaler Algebren.- 5 Klassifikation der endlichen einfachen Gruppen.- Algebraische Zahlentheorie.- I Das Reziprozitätsgesetz.- II Klassenkörpertheorie.- III Die Langlands-Vermutung.- IV Etale Topologie der algebraischen Zahlkörper.- Literatur.- Erich Hecke und die Rolle der L-Reihen